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Variational Bayesian Matrix Factorization
for Bounded Support Data

Zhanyu Ma, Member, IEEE, Andrew E. Teschendorff, Arne Leijon,
Yuanyuan Qiao, Honggang Zhang, Senior Member, IEEE, and Jun Guo

Abstract—A novel Bayesian matrix factorization method for bounded support data is presented. Each entry in the observation matrix is
assumed to be beta distributed. As the beta distribution has two parameters, two parameter matrices can be obtained, which matrices
contain only nonnegative values. In order to provide low-rank matrix factorization, the nonnegative matrix factorization (NMF) technique
is applied. Furthermore, each entry in the factorized matrices, i.e., the basis and excitation matrices, is assigned with gamma prior.
Therefore, we name this method as beta-gamma NMF (BG-NMF). Due to the integral expression of the gamma function, estimation of
the posterior distribution in the BG-NMF model can not be presented by an analytically tractable solution. With the variational inference
framework and the relative convexity property of the log-inverse-beta function, we propose a new lower-bound to approximate the
objective function. With this new lower-bound, we derive an analytically tractable solution to approximately calculate the posterior
distributions. Each of the approximated posterior distributions is also gamma distributed, which retains the conjugacy of the Bayesian
estimation. In addition, a sparse BG-NMF can be obtained by including a sparseness constraint to the gamma prior. Evaluations with
synthetic data and real life data demonstrate the good performance of the proposed method.

Index Terms—Nonnegative matrix factorization, Bayesian estimation, bounded support data, variational inference, extended factorized
approximation, relative convexity, collaborative filtering, bioinformatics
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1 INTRODUCTION

HE nonnegative matrix factorization (NMF) was intro-
duced by [1], [2] as an alternative way for reducing the
dimensionality of the data. Unlike the principal component
analysis (PCA) or the independent component analysis
(ICA) which has no constraint on the data, the NMF factor-
izes a nonnegative matrix into a product of two nonnegative
matrices (a basis matrix and an excitation matrix). It is a fun-
damental technique for low rank nonnegative matrix
approximation and has been widely used in information
retrieval [3], image analysis [2], [4], source separation [5],
[6], [7], [8], speech denoising [9], [10], collaborative filtering
[11], [12], [13], [14], and other applications.
In the previous research, a lot of algorithms were pro-
posed to realize the matrix factorization efficiently. By mini-
mizing the I, norm of the reconstruction error and the
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Kullback-Leibler (KL) divergence between the original
matrix and the reconstructed matrix respectively, Lee et al.
proposed two algorithms for NMF [15]. To emphasize the
effect of presenting the local features in the face images, the
optimization with sparseness constraints was introduced in
[16]. Also, assigning different weights to the vectors in the
basis matrix could also improve the local representation [17].

Bayesian estimation, in general, can provide robust solu-
tion to parameter estimation. In [18], the authors proposed
an solution for ICA with mean-field approach. This is an
early solution for Bayesian treatment of matrix factorization.
To extend the NMF into a probabilistic framework, Schmidt
et al. considered the reconstruction error as Gaussian dis-
tributed and presented a Bayesian treatment to NMF in [19],
[20] where the reconstruction error E, = X, — [WV] ot 18
assumed to be Gaussian distributed and exponential prior is
assigned to the entries in the basis and excitation matrices.
The Gibbs sampler was utilized to simulate the posterior dis-
tribution and an efficient iterated conditional mode (ICM)
[21] algorithm was proposed. To infer different optimization
criteria, the relation between the Itakura-Saito (IS) diver-
gence and some other cost function of the NMF (e.g., the
Euclidean distance, the generalized KL divergence) was
studied in [5]. Furthermore, the NMF with beta divergence,
which is a general form of distance measure, was introduced
in [7]. These two works were applied successfully on audio/
musical data source separation. In [22], Cemgil assumed a
Poisson distribution to the entries in the observation matrix
and assign a gamma prior to the entries in the basis and the
excitation matrices. Even though this method described the
KL divergence measure in a statistical framework, there are
two disadvantages. Firstly, the assumption that the entry in
the original matrix is Poisson distributed violates the statisti-
cal interpretation of the KL-NMF on continuous data [5].
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Secondly, this paper [22] applied the Poisson NMF (P-NMF)
for gray image processing. The Poisson assumption was suit-
able only for integer data, so that the continuous property of
the data was violated. Furthermore, the author applied the
P-NMF to analyze image data, which ignored the bounded
property of image data. One possible way of justifying the
likelihood of KL-NMF for real data is writing X,; = X +

E,;, where X, are Poisson distributed and FE,; is uniformly
distributed on [0,1]. A recent paper for the Bayesian treat-
ment of the NMF derived a nonparametric Bayesian NMF
with gamma process for music record processing [6]. In that
paper, each entry in the observation matrix was assumed
exponential distributed and the NMF was applied to the
parameter matrix, rather than to the observation matrix
directly. The gamma process was used to control the channel
gain (weighting factor for each basis) such that the model
size could be decided automatically based on the data.
However, for the purpose of choosing the distribution
appropriate for the spectrogram data, the authors did not
consider conjugate pairs of distributions.

In some real world applications, the data we are processing
has bounded support. For example, the digitalized image pix-
els are distributed in the interval [0, 2 — 1], where R denotes
the number of bits to store the pixel value. The correlations of
gene-expression levels and the DNA methylation data are
measured and recorded in a fixed range. The line spectral fre-
quencies used in speech coding are strictly bounded in the
range [0, 7r]. For topic discovery, the vector that denotes the
probabilities a document belongs to all the topics has its /;
norm equals 1, the latent Dirichlet allocation model was pro-
posed to capture such property [23]. In order to describe the
data more efficiently, some matrix factorization related work
took this bounded support into account by involving link
functions. Schmidt et al. [19] proposed a Bayesian treatment
of NMF via Gaussian process prior (GPP-NMF), where a link
function is employed to connect the nonnegativity with
Gaussian prior. In principle, it is possible to derive a suitable
link function (e.g., the logit function) that addresss bounded
support. For the purpose of capturing the ordinal property of
data, a hierarchical model for ordinal matrix factorization
(OMF) was introduced in [14]. The authors applied an ordinal
regression likelihood function to get the possible discrete
rank so that the ordering is obtained. This OMF method can
also be extended to derive a probabilistic model for bounded
support data. However, all the above mentioned methods
involved link function to capture the bounded support. So far
as we know, there is no matrix factorization strategy pro-
posed directly for bounded support data, without using any
link function. This motivates us to study the matrix factoriza-
tion method for bounded support data.

Several researches have shown that, compared to some
conventional used statistical model, e.g., Gaussian distribu-
tion, the beta distribution can model the bounded support
data more efficiently and lead to better performance in many
applications [24], [25], [26], [27], [28], [29]. In this paper, a
Bayesian matrix factorization method for bounded support
data is presented. We assume a generative model such that
each bounded support element in the observation matrix is
generated from a beta distribution. Different from the con-
ventional NMF methods which applied the factorization

directly on the observed matrix, we apply the NMF strategy
to the parameter matrices of the beta distribution. There are
two parameter matrices for the beta distribution. As all the
elements in the parameter matrix are nonnegative, each
parameter matrix is nonnegatively factorized into the prod-
uct of a basis matrix and an excitation matrix. To handle the
correlation between these two parameter matrices, the exci-
tation matrix is chosen to be the same for both factorizations.
Each entry in the basis matrices and the excitation matrices is
assigned with a gamma prior. Therefore, we name the pro-
posed Bayesian matrix factorization method as beta-gamma
NMF (BG-NMF). By the relative convexity [30], [31] of the
log-inverse-beta (LIB) function, we approximate the objec-
tive function with a single lower bound (SLB). Thus, a single
function is maximized during each update step and the con-
vergence of the proposed is guaranteed. The tightness of the
lower bound approximation is also discussed. With the vari-
ational inference framework [32], [33] and the methodology
of the extended factorized approximation (EFA) [6], [26],
[32], [34], [35], [36], [37], [38], an optimal solution to approxi-
mately calculate the posterior distribution can be obtained in
an analytically tractable form. This solution retains the conju-
gate match between the prior and the posterior distribution,
which is favorable in practice. In addition, a sparse BG-NMF
can also be obtained by including a sparseness constraint to
the gamma prior. The performance of the proposed method
was evaluated with both synthesized data and several real-
life applications in source separation, collaborative filtering,
and bioinformatics areas.

The rest of this paper is organized as follows: the Bayes-
ian NMF is introduced in Section 2. For the bounded sup-
port data, we introduce a generative Bayesian NMF model
in Section 3. Also, the parameter estimation method and the
corresponding algorithm are proposed. In Section 4, the
experimental evaluations and comparisons are shown.
Finally, some conclusions are drawn in Section 5.

2 NONNEGATIVE MATRIX FACTORIZATION

The conventional NMF problem is presented as

Xpxr = Wpyg Vixr, 1)

where Xpy7, Wpxk, and Vg, contains nonnegative values
Xpt, Wy, and Vi, respectivelyand p=1,...,P, t=1,...,T,
k=1,..., K. Usually, we choose K < T such that the NMF
is a low rank matrix approximation. W and V are usually
named as the basis matrix and the excitation matrix, respec-
tively. Denoting the tth column in X as x;, we have that x; is
a linear combination of all the columns in W, with weight-
ing coefficients from the tth column in V. In addition to the
conventional NMF method, the NMF can also be treated in
a probabilistic way so that we estimate the parameters of
the underlying model, instead of estimating the basis and
the excitation matrices directly.

In several practical applications, the data we are process-
ing have bounded support property. In the following para-
graph, we propose a Bayesian matrix factorization approach
for bounded support continuous data and derive an analyti-
cally tractable solution for calculation convenience (with
conjugate pairs of prior and posterior distributions).
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3 BAYESIAN MATRIX FACTORIZATION FOR
BOUNDED SUPPORT DATA

As shown in literature [24], [25], [26], [27], [28], [29], [39], the
bounded support data (usually defined in the interval
[z, 3], which can be linearly compressed to [0,1]) can be
modeled more efficiently with the beta distribution. So far
as we know, there is no matrix factorization strategy pro-
posed for the bounded support data. We believe this is due
to the difficulty in explicitly placing the bounded support
constraint in the factorized matrices. Instead of introducing
the bounded support constraint directly to the factorized
matrices, we propose a generative model for the observation
matrix where the bounded support property is implicitly
utilized.

3.1 The Generative Model

We assume that each bounded support element X, is gen-
erated from a beta distribution with parameters a,; and by,.
Thus with an observation matrix Xp. 7, we have two param-
eter matrices a and b of size P x T, respectively. Similar to
the GaP-NMF [6, Eq. (1)], we jointly factorize each parame-
ter matrix, rather than the observation matrix, into a prod-
uct of a basis matrix and an excitation matrix respectively as

apyxr ~ ApxxHgxT, @

bp.r ~ BpuxHg 7.

Since all the entries in A, B and H are nonnegative, we
assign a gamma prior to each entry. With the above descrip-
tion, we assume that the matrix X (with element X, € [0, 1])
is drawn according to the following generative model'

Ay ~ Gamma(Ay; fg, o),
By, ~ Gamma(By; vo, By),
Hy ~ Gamma(Hy; pg, &o), ®

Xy~ Beta( Xy > A, > Byelie),
k k

where Gamma(z; k,0) is the gamma density with parame-
ters k, 0 defined as

k

% .
Gamma(z; k,0) = mxk_le_m, k,0 >0, 4)

and Beta(z;u,v) is the beta density with parameter u, v
defined as

1

a1 _ oyl
B(u,v)x (1—2)"", u,v>0, %)

Beta(z; u,v) =

where B(u,v) =I'(uw)['(v)/I'(v+v) and I'(-) is the gamma
function. Fig. 1 shows the details of this generative model.

1. When the beta distribution is unimodally distributed, both the
parameters are greater than 1. This is a typical case in practical prob-
lems and we only study this case in this paper. To this end, we assume
the probability that )°, A, Hj: < 1 is very small (almost close to zero),
which is similar as that in [26]. The same assumption applies to
>k BorHi.

Xpt

Fig. 1. Graphical model of the BG-NMF. All the dashed circles in the
graphical figure represent variables. A,;, B,., and H;, are assumed to
be gamma distributed. X, is assumed to be beta distributed with param-
eter a,, and b,. Arrows show the relationship between variables. The
variables in the box are independent from each other.

3.2 Variational Inference

If we consider the conjugate match between the prior distri-
bution and the posterior distribution, the forms of the prior
distribution and the posterior distribution are required to
be the same. Given the prior distribution, the inference to
the posterior distribution is the central problem in the
Bayesian analysis, which is also important in our BG-NMF
model. The exact Bayesian inference for BG-NMEF is not ana-
lytically tractable. With the principle of variational inference
(VD) [32], [33], [34], [35], we have already divided the latent
variables Z = {A,B,H} into disjoint groups A, B, H and
assigned a gamma prior to each entry in those matrices (see
Section 3.1). Thus the prior distributions of the latent varia-
bles are

p(A) = [T p(Ap0).
.k

p(B) = HP(Bpk)»
Pk (6)

p(H) = Hp(Hkt)a
k.t

If we treat each element in X as conditionally independent
from each other given the latent variable Z, the probability
density function of the observation X is

1
X|Z) =
p(X|Z) ]‘;IB(ZJ@ ApHig, >, Bpka) ™)

x (Xpt)z"'Apkarl(l — Xm)zk ByiHja =1
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Denoting the posterior distribution of A,;, By, and Hj, as
q(Aur), q(Byr), and q(Hy,), respectively, we can decompose
the log marginal likelihood of X as

X,Z Z|X
In p(X) = Eyz) [lnp(q(z) )} ~ P {mp(q(z‘) )} ®)
p(X,Z)

_Ey [m } + KL(¢(Z)[p(Z|X)).

q(Z)

In the above equation, we approximate the true posterior
distribution p(Z | X) by

4(Z) ~ q(A)q(B)g(H) = [ [ a(Am)a(Bu) [[ a(Hr).
.k t

To minimize the KL divergence from ¢(Z) to p(Z|X) is

equivalent to maximizing E,z)[ln ’%], which is the objec-

tive function in the variational inference [33]. If we consider
A, as the only variable and fix the remaining variables in Z
for a moment, the optimal solutions to ¢*(A4,;) can be
obtained as

Ing*(Apr) = Eyga,,) [Inp(X, Z)] + const

= Z E\Q(Apk) —InB (Z APkafm Z Bpkat>:|
t k k

F(Ap;«,B;)‘:-,H:.i)2

+ (Z Fkt In Xpt> Apk
t

+ (o — 1) In Ay — g Ay + const,

(10)

where 7 denoted the expected value of x.

The optimal solutions to ¢*(B,;) and ¢"(H,;) can be
obtained in a similar way, by following the the variational
inference principles. Details about these optimal solutions
can be found in Appendix A.

In order to get conjugate pairs and an analytically tracta-
ble solution, we need to approximate Ing*(A,;) to have the
logarithmic form of the gamma distribution.

If we assume that F(4,., B,, H.;) in (10) can be approxi-
mated by an expression expressed only in terms of In A,
the inverse-scale parameter in the gamma distribution can
be updated analytically as

O{;k =0y — Zﬁkt In X,;. (11)
T

Also, we have

B =B~ > Hiln(l—X,). (12)
t
Similarly, the inverse-scale parameter for H;; has an analyti-
cal solution as
=200 — Z[Apk In X, + By In(1 — X)) (13)
»

2. A,. means a row vector which is the pth row of A. B,. means
a row vector which is the pth row of B. Similarly, H., is the ¢th column
of H.

One way to have an analytical tractable solution to the
shape parameters is that the sum-expectation parts in (10),
(55), and (56) only contain In A, In By, and In H,;, respec-
tively. However, due to the integral expression of the
gamma function I'(-), the expectation of In I'(-) is not analyti-
cally tractable. Thus, an analytically tractable solution can
not be obtained directly.

3.3 An Analytically Tractable Solution via Extended
Factorized Approximation

According to the extended factorized approximation [6],

[26], [32], [34], even though we can not express the sum-

expectation parts in (10), (55), and (56) directly in the form

we need, we could still find an auxiliary function

E,z) [In p(X, Z)], which satisfies

Eq<z) [lnp(X, Z)} Z Eq(z) [lnﬁ(X, Z)} (14)

Then a lower bound to the objective function Ez) [In” é)((zz))} in

(8) can be obtained as

p(X,Z)
q(Z)

Maximizing this lower bound is asymptotically equivalent
to maximizing the objective function in (8) [26], [32], [34],
[40]. In this paper, we will take the EFA method to derive
an analytically tractable solution to the Bayesian estimation
of BG-NMF.

Eq(z) {ln } > Eq(z) [lnﬁ(x, Z)] — Eq<z> [hl q(Z)}. (15)

3.3.1 Relative Convexity
Before going through the details, we study some properties
Of Fpt é F(Apﬁ:, Bp‘:, H;t) .

Property 3.1. The log-inverse-beta function
Fpt = — hlB (Z Ty Z yk>
k k

is convex relative to [30], [36] In x for arbitrary y, if and only
if >, yr > 1. In the above property, we used x; and vy to
denote ApHy and By Hjy respectively and x =[zy,...,

T T
Tl y =W, U] -

(16)

Proof. The elements of the Hessian matrix of F,, in (16) with
respect to In x are

82Fpt cx? + ex m=n
= — m m 1
Honn dlnx, Inx, CTmTn m #n, amn
where
K K
c=v (Z(Tk + yk)) -y (Z Jik),
k=1 k=1 (18)

e= w(i(azk + yk)> - w(g xk>.

k=1
The upper-left k x k (k =1, ..., K) sub-matrix of the Hes-
sian matrix Hxxx is

Hixr = ¢ x ddT + e x diag(d), (19)
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where

d=[z,... .,xk]T,mzl,...,k. (20)

7x7n,7 i

The determinant of this sub-matrix is

Det(Hxi) = Detle x diag(d)]{l +£ {dT(diag(d))*ld} }

k
= ¥ x Det[diag(d)] (e—i—cx_M) .

e
(21)
The above equation is derived by [41]
Det(X + ert) = Det(X)(1 + X7 r). (22)
It has been proven (see [26, Appendix A]) that
HY (@ +y) — Y(&) + 2 (@ +9) — (D]} >0, (23)

when Z > 0and g > 1.

If we substitute & =1,z and § =Y 1y into
(23), then we have (recall that Zg:l i >1 and
S, yk > 1, since we force the beta density function
to be unimodal)

k
etex Yy wn > Y +9) — Y(E) + FY (@ + ) — v (@) > 0.

m=1

(24)

The above inequality was obtained by the facts that y/(-)
is a non-increasing function (then ¢ < 0) and me:l Ty <
Z. As y(+) is an increasing function, we have e > 0. Then
we can conclude that Det(Hyyx)) > 0. Since for any
k=1,..., K, the leading principal minors of the Hessian
is positive, the Hessian is a positive definite matrix. Thus
F, is convex relative to In x. a

3.3.2 A Lower Bound Approximation to F

With this relative convexity and by restricting that
> ApHyy and Y, B, Hyy are both greater than 1, the expec-
tation of the LIB function can be lower-bounded as

Eq(Z) [Fm} >—InB (Z Zpkﬁkh Z Bp/chL>
% %
+ 1#( (ApHp + Epkﬁkt)> -y (Z Ay Hy
| %

X Z Apkﬁkt{Eq(Ap w)a(Hy ) [ln(Apkat)} — ln(Zpkﬁk[)}
k

+ w( (ApkHM + Pkﬁkt)> - W(Z Epkﬁkt
L \% -

By HiAEy(n, g, 10(Bpr Hie)) —

(25)

Proof. By the relative convex property 3.1, the first-order
expansion of the LIB function with respect to Inx around

Inx is a lower bound of the LIB function. Then we have

the following inequality as®
+ Eq(x,y){ [ ( Tk +

()]
k
X ka(lnxk — ln"lik)}

k

As the LIB function in (26) is also relative convex to In'y for
any x, the expectation of the LIB function can be further
lower-bounded as

Eey) [Fri] > By [ hﬂ?(;f
)-

Eq(xy) [FP'] Ejxy) | —InB <Z Ty Z Z/L) } (27a)
+ Eq(x,y){ [Vf <Z($k + yk)) - (Z yk):|
‘ ¢ @27h)
x Z?k(ln Y — 111?70}
k
+ Eyxy) { {w (Z(wk + yk-)) -V (Z m)}
' ’ 27¢)

X Zik(ln ;. — In zk)}.

T
In the above equation, the first term (27a) is a constant
which does not contain variable x or y. The second term
(27b) contains only the variable y, thus the expectation
with respect to x can be ignored. The third term (27¢c)
contains both x and y. As x and y are not mutually inde-
pendent (z; = AppHy and y; = By Hy share the same
Hyy), the expectation can not be carried out separately.
However, as x; and y;, ¢ # j, are mutually independent,
this term can be written as in (28), where we used the
fact that (2, yi) = a(Apr)a(Bpr)q(Hie)-

E,xy) { {w (;(fk. + m)) —v <2k: fk> }

X ;@:(lnxk - ln@)}
=> B {E\q [w(Z(zk+yk)> ~ ¢<ij)}

k k

X Ek(ln T — lnxk)}

O e )

a(Hy)

X Eq(Apk.)[Ek(ln T — lnfk)] }

b(Hp)

(28)

3. Recall that we denote z;, =
isx = [z1,9,...,75] andyisy =

Ay Hy and y = By Hjy. The vector x
T
[J17yz---~7y1{] .
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For two increasing functions a(z) and b(z), we know

that [42], [43]
Ej)[a(2)b(2)] = E ) [a(2)]E o) [b(2)],

where f(z) is the PDF of x. Then the third term (27¢) can
be lower-bounded as

Exy) { {Vf <2k:(xk + yk)) - (zk: m)}

X Zxk (Inzy — lnxk)}

{ (y) {w( $k+yk)> “”(Zk:m)] (30)

Zr(Inzp — In xk)}}

o) o)

{Z ZTp(Inzy, — In xk)}

&

since both (z) and Inz are increasing functions. More-
over, both ¥(z) and Inz are concave functions in z. So
we have the following inequalities by the Jensen’s
inequality as

(29)

Ejp[nz] —nz <0
q(T[ ( )] <1//( )

Substituting these relations into (30) and with some alge-
bra, we have

oo f(30ew) (7))

DI

k

o)

{Z (Inzxy, — lnfk)}.

k

(31)
(Inz, —InTy)}

Finally, the expectation of the LIB function in is lower-
bounded as

Eyxy) [Fot] > Eqxy) { InB (Z Tk Z yk>

|
) ()
)

x> BBy [Inys] -
k

AlEem) ()
)

—Inyg,) (33)

InT;

X Zxk q(x lnxk

Thus, the lower bound approximation in (25) is proved
by substituting z; and vy, by A,Hy and By Hy,
respectively. 0

3.3.3 Tightness of the Approximation to the LIB
Function

In (25), we approximated the LIB function by a lower bound
in (33). This lower bound approximation was obtained by
utilizing the first-order Taylor expansion around X, y and
applying Jensen’s inequality. As several approximations
were used, it is interesting to discuss the tightness of this
lower bound and check if X and y are the reasonable choices
for tightening the lower bound.

First, let’s look at the first-order Taylor expansion around

Inz. For the expectation of the LIB function — In B(z, y), we
have the following inequality as

Ejo) [~ InB(z,y)]

> Ef(x){ —InB(e h” Y). (34)

+ [w(e‘” +y) — w(e@)] e@(lnx - 1?5)}.

Taking the derivative of (34) with respect to Inz can maxi-
mize this first-order Taylor expansion. With some calcula-

tions, the optimal Inzis

Inz" = Ep[lnzl. (35)
If  is gamma distributed as
f(x) = Gamma(z; 1, @), (36)
the optimal In z writes
Inz* = Y(pn) —Ine. (37

Second, we study the usage of Jensen’s inequality in (32).
As () is a concave function, we have

Ef() [¥(2)] < Ef)[¥(20) + ¥/ (w0) (x — 20)].

Similarly, the optimal z, that minimizes the first-order
Taylor expansion is

(38)

7y = Eyle) =z =2 (39)
When we take z = 7, (38) is exactly the same as the Jensen’s

inequality. Thus, the first-order Taylor expansion reaches
the optimal approximation when Inz* =E f()[Inz] and the
Jensen’s inequality for y(x) is already optimal.

As shown in Fig. 2, Inz and y(z) are very close to each
other, especially when x becomes large, say « > 5. To sim-
plify the expression and facilitate the calculation, we used
Inz to approximate y(z) in (37) throughout this paper.

Then the optimal Inz is approximated as

Inz* ~Inpg—Ine=In7. (40)
In summary, taking the first-order Taylor expansions
around In7Z and applying the Jensen’s inequality are the

nearly optimal choices for LIB approximation.
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Fig. 2. Comparison of In z and y(z).

To illustrate the accuracy of the approximation, we list the
comparisons between the true expectation of the LIB func-
tion and the approximating one (see (25)) in Table 1. In this
comparison, we generate x and y, 100,000 samples for each
variable, from a known Gamma distribution. The true expec-
tation of the LIB function E,, ) [F] is calculated numeri-
cally. Meanwhile, the approximating one E, [F,] is also
calculated with the mean values of « and y and the expected
values of Inz and Iny, respectively. It can be observed that
the proposed approximation to the expectation of the LIB
function works well under different conditions.

3.3.4 Optimal Estimation via the EFA

With (25), an auxiliary function that satisfies (14) can be
obtained as

2 p(X,Z)] = Eyz) {Z(ﬁwmt) : (41)

pit

where R,; denotes the unchanged parts in the log-likelihood
function (the logarithm of (7)) as

Ry :Z<Apk’H]ct —1)In Xy,
T

(42)
+ ) (BpeHi — 1)(1 = In X,,).
k

Combining (41) and (15) together, the objective function
that we want to maximize is finally lower-bounded as

p(X, Z)}
E In
“Z)[ 4(Z)
Eyz)[Inp(X,Z)] — Eyz

Ey2) [Z (ﬁ,,t + Rm)

pit

Y%

)1a(Z)]
—E,z)[q(Z)].

(43)

In order to get the optimal solutions to ¢*(A,), ¢"(B,:), and
q"(Hy), the principle of the VI framework [33] can be
applied and the optimal updates are

TABLE 1
Comparisons of the Approximation Accuracy of the LIB Function
Eq(uﬁy) [Fpt] Eq(;z:,y) [ﬁpt] SNR (in dB)
z ~ Gamma(x;4, 3) 0.6319 0.6008 26.15
y ~ Gammal(y; 8,5)
x ~ Gamma/(z; 40, 30) 0.8358 0.8335 51.10
y ~ Gamma(y; 80, 50)
x ~ Gamma(z; 4007 300) 0.8562 0.8559 71.41
y ~ Gamma(y; 800, 500)
In q* (Apk) = E\(I(Apk) Z(ﬁpt + R'pt) + COIlSt7 (44)
L t -
Ing*(By) = E\y(p,,) Z(Fi’t +R,)| +const,  (45)
L t -
and
Inq* (Hy) = E\ym,,) Z(Fp, +R,1)| + const, (46)
L » J
respectively.

3.3.5 An Analytically Tractable Solution via the EFA

By skipping all the terms that do not contain A,;, we can
obtain an analytically tractable expression for In ¢*(A,;) as

N{ [ ( pk+Bpk)Hkt>

(Z kat>:| pkat + o — 1} In Ay,

k

(aogt:ﬁ

Ing* (4,

) pk + const,

47)
which has the logarithmic forms of the gamma densities.
Thus the con]ugate match between the prior p(A,;) and the
posterior ¢*(Ap;) is satisfied. The analytlcally tractable
expressions for In¢*(B,;) and In¢*(Hj;) can be obtained in
similar manner, which are provided in Appendix B.

Since ¥(+) is a monotonous increasing function, the shape
parameters in (47) and (B) are always positive, which satis-
fies the definition of the gamma distribution. Furthermore,
the inverse-scale parameters in (11), (12), and (13) are all
positive since X, is in (0, 1).* With the update equations in
(11)-(13) and (47)-(B), we can update the posterior distribu-
tions of A, B, and H sequentially. Instead of maximizing the
objective function directly, we maximize a lower bound of
the objective function, which yields an analytically tractable
approximation for ¢(Z) = ¢(A)q(B)g¢(H) to approximate the
true posterior distribution p(Z | X).

3.3.6 Convergence

In the above sections, we factorize the latent variable Z into
three disjoint groups A, B, and H. For the convenience of

4. To avoid the infinity quantity in the practical implementation, we
assign £, to X}y when X, =0 and 1 — ¢, to X, when X, = 1. Both ¢,
and ¢, are slightly positive real numbers.
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Fig. 3. lllustration of the convergence of the BG-NMF algorithm. We ran-
domly selected 80 images from the Olivetti faces database [46] and
downsampled them to size 32 x 32. We set K = 10, 20, and 30. The
algorithm could always converge after about 60 ~ 80 rounds of itera-
tions. The objective function is numerically calculated by generating
samples from the posterior distributions.

calculation, we introduced a single lower bound to the
objective function. We then maximized this SLB, instead of
the original objective function, to approximate the true pos-
terior distribution. As shown in [26], [40], maximizing this
SLB is equivalent to maximizing the original one asymptoti-
cally. Furthermore, since this SLB is the only function that is
maximized in every update step, convergence of the pro-
posed algorithm is guaranteed. However, a local maximum
may be reached [26], [33], [40]. This effect is a general phe-
nomenon whenever VI is employed [33].

3.4 The BG-NMF Algorithm

To facilitate the update, we express the update of the hyper-
parameters in matrix form. The algorithm of the BG-NMF is
summarized in Algorithm 1. Global optimum may not be
reached because of the multi-modal property of the poste-
rior distribution. It is observed that this objective function is
non-decreasing during iterations. Fig. 3 illustrates the con-
vergence of the proposed BG-NMF algorithm.

3.5 Computational Complexity

For Bayesian estimation framework, either the Markov
chain Monte Carlo (MCMC) method (e.g., Gibbs sampling)
can be employed to numerically simulate the posterior dis-
tributions of the parameters or analytically tractable solution
can be derived by introducing lower-bound approximation
with the principles of variational inference. Generally speak-
ing, the VI procedure has several advantages. Firstly, it cir-
cumvents sampling from high-dimensionally multinomial
variables, which is the main computational bottleneck
with the Gibbs sampler. Secondly, it is straightforward to
calculate the hyper-parameters which avoid maximizing
the marginal likelihood via Monte Carlo EM procedure
[44], [45]. Hence, we only compare the computational com-
plexity of proposed BG-NMF method with other methods
which use link function and simple Bayesian matrix factori-
zation approach.

Algorithm 1. BG-NMF

Input: Observation X, number of basis K
Initialize «o, By, ¢o, o, Vo, Py, MmazIter;
Generate A, B,and H from 3)as A = poa, B=vg g,
H-= poc f
repeat o
a=qy— (nX)H
p =+ {Y[A+B)H - yAH)H 0A'
B=8y—[n(1- X)]HT
v=v+ {y[A+B)H - yBH)}H 0B
t=¢ A mX-B In(1-X
p=ry+v[(A+BHH ©(A+B)
—yAHH 0A-yBHH B
Optional: Calculate the objective function numerically.
until The number of iteration is equal to maxlter or some
criteria are reached.
Output: Hyper-parameters &, p, B, v, £, and p.
tg and ® denote element-wise division and multiplication,
respectively.

According to the algorithm presented in Algorithm 1, the
operations of the proposed BG-NMF algorithm are mainly
based on matrix multiplication. Therefore, the computa-
tional complexity is linear w.r.t. the dimension of samples
P, the amount of samples 7" or the dimension of the reduced
feature space K. For the OMF method [14] which involves
link function, both Gibbs sampling-based method and VI-
based method were proposed. The VI-based method is aim-
ing for estimate the posterior distribution of the mean and
the covariance matrix in the multi-variate Gaussian density
function. The computational cost for the hyper-parameters
estimation are mainly spent on matrix multiplication, which
are also linear to the size of data matrix. In the BG-NMF
method, parameters from three matrices (two basis matrices
and one excitation matrix) are required to estimate while
the parameters to be estimated in [14] are from two matrix
(one basis matrix and one excitation matrix). Hence, given
the same number of iterations, the scale of computational
demand for BG-NMF is the same as that required in the
OMF method, but the practical computational cost of BG-
NMEF might be slightly higher. When applying suitable link
function (e.g., logit transform), the GPP-NMF introduced in
[19] can be applied for bounded support data as well. By
ignoring the computational cost of the link function, the
main computational cost comes from the MAP estimation of
§ and n [19, Section 2.6]. Thus, the overall computational
cost of this method mainly depends on the optimization
method used in MAP estimation, which usually contains
gradient search. Hence, we speculate that the computational
cost of the BG-NMF method is less than the GPP-NMF.

3.6 Sparseness Constraints

The gamma distribution is a unimodal distribution with
two parameters: the shape parameter k£ and the inverse-
scale parameter 6. The expected value of gamma distribu-
tion is k/# and the variance is k/6>. When the mean value is
fixed, a small shape parameter could force the variable to
have a very high probability near zero, hence it favors a
sparse representation of the variables. In our BG-NMF
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model, we can either include this sparseness constraint to
the priors of the basis matrices A and B, which could make
the basis matrices represent local features, or apply this con-
straint to the excitation matrix H such that only a few basis
vectors are selected to recover the original signal.

3.7 Usage of the Proposed Method
For the beta distribution, the expected value of the variable
is T = —. Thus in this proposed generative BG-NMF model

u+v* - P
(see (3)), the expected value of X is X, = - ‘C;’pt. If we take

the point estimate to A,;, By, and Hy, then the expected
value of X; can be approximated as

- A H:
Xpt ~ _ ;k pk kt_ — (48)
Zk AﬂkHM + Zk Bpkat
which can be expressed in matrix form as
X~ (AH)¢(AH+BH), (49)

where ¢ means element-wise division.
For the purpose of visualization, we can combine A and
B together to create a pseudo-basis matrix which could play
a similar role as the basis matrix W (see (1)) in the conven-
tional NMF. Generally, we have
X~AHoAHIBH #£[AsA+B]H (60
Hence this reconstruction mentioned above is not linear in
terms of AQ(A + B). However, if the columns in H are
highly sparse, the reconstruction in (50) could be approxi-
mated as a linear combination of A ¢ (A 4 B) (if the column
sparseness is 1, it is exactly linear). Thus in the experimental
part, this pseudo-basis matrix
W=2A¢(A+B) (51)
is used to represent a kind of “basis” matrix for the conve-
nience of visualization.

4 EXPERIMENTAL RESULTS AND DISCUSSION

The BG-NMF model is proposed for bounded support data.
We have conducted several experiments to demonstrate the
performance of this proposed method.

First, in 4.1 and 4.2, we apply our BG-NMF model to the
Olivetti faces database [46], which contains 400 human face
images in 8 bits gray scale. The 400 face images are from 40
persons and each person has ten face images. We com-
pressed the pixel value linearly to [0, 1] by dividing each
pixel value by 255. Also, we downsampled each image from
the size 64 x 64 to the size 32 x 32. Each image was then
rearranged into a column vector with dimension 1,024. The
point estimate from the BG-NMF model (see (49)) was con-

sidered as the reconstructed signal X. We compared our
BG-NMF with different NMF methods and took the peak
signal-to-noise ratio

Im X
PSNR = 10 log,, M§

as the objective criterion. Here, MSE is the mean square
error between the true and estimated images defined as

(52)

(a) Source (b) Estimated Source

Fig. 4. Synthetic source separation example. Each column is rearranged
into a 6 x 6 matrix for visual clarity. The order of the matrices has also
been rearranged for the purpose of easy comparison. See Section 4.1
for more details.

1 S 2
MSE = ﬁZ(Xpt — X,

pit

(563)

and I,,,,x denotes the maximum possible value in an image.

Secondly, in Section 4.3, the proposed BG-NMF model is
applied to the Netflix problem. We consider the movie rat-
ings from 1 to 5 as sampled from a continuous variable and
model it by the beta distribution. The BG-NMF is used to
model the relations between the movie indices and the rat-
ings given by different reviewers. With the obtained model,
we predict the missing values by the generative framework
introduced in Section 3.1.

Thirdly, we apply the BG-NMF model in DNA methyla-
tion analysis in Section 4.4. The proposed BG-NMF model is
used in retrieving the components of variation associated
with normal/cancer status. Also, it serves as an efficient
tool in dimension reduction.

4.1 Source Separation

We tested the ability of source separation of the BG-NMF
model with sparseness constraint by synthesized data and
real life data evaluations. For the synthesized data evalua-
tion, we generated a basis matrix W with size 36 x 6, where
each column represented one 36 dimensional source with
element value in [0,1] (shown in Fig. 4a). Then a non-
negative mixing matrix V with size 6 x 150 was generated.
Each element in V is sampled from a gamma distribution
with the shape parameter equal to 0.1 and the inverse-scale
parameter equal to 1. Each column in V is normalized to be
a unit vector. An observation matrix was then obtained as
X = WV. The BG-NMF model was trained on the observa-
tion matrix and K was set to be six (assuming that we know
the number of sources). For the purpose of visualization,
the sparse constraint was applied to the basis matrix by
setting the inverse-scale parameter and the shape parameter
in the gamma prior equal to 0.0001 and 1, respectively. After

convergence, the estimated basis matrix W was approxi-
mated by (51) and shown in Fig. 4b.

Furthermore, for the real life data evaluation, we ran-
domly selected three images as the source images from
the Olivetti faces database. The basis matrix W is of size
1,024 x 3. A mixing matrix V of size 3 x 40 was generated
from a gamma distribution with the shape parameter
equal to 0.1 and the inverse-scale parameter equal to 1.
Then each column in the mixing matrix was normalized
to be a unit vector. The source images were mixed by the
mixing matrix to obtain a observation matrix X =WV.
We applied the BG-NMF to separate the mixed images
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(a) The source images (upper
panel) and the estimated source
images (lower panel).

(b) Examples of mixed images.

Fig. 5. Source separation with images. See Section 4.1.

with K set to be three. Fig. 5 shows the separation perfor-
mance of the BG-NMF model.

4.2 Prediction of Missing Data

In this section, we apply the BG-NMF on the task of predict-
ing missing data. We randomly selected five images from
each person in the Olivetti faces database (which gives
5 x 40 = 200 in total) to train a model. We removed a patch
from each of the remaining images and try to predict the
missing part from the trained model. Due to the advantage
of the Bayesian framework, the posterior distributions in
the trained model are now used as the prior distributions
when we predict the missing part. For an image with a
patch removed, we used the remaining parts to update the
generative BG-NMF model and obtain the mean value of
the excitation matrix as H. Then the missing pixel values
are reconstructed from the generative BG-NMF model as
described in (48), which are the means of the corresponding
beta distributions as

X — >k Aikgkj
Y AnHy + Y, BiHyy

where A and B are the means of the recently updated poste-
rior distribution, S denotes the location indices of the missing
pixel values. The PSNR is utilized as the measure of predic-
tion performance. I, is the maximum possible value of the
image and MSEFE is the mean squared error between the true
and estimated images. We compare the BG-NMF with the P-
NMF [22],° which is a recently proposed Bayesian NMF
method focusing on image processing. In total, 20 rounds of
simulations were done for each model and the mean result
were reported. The PSNR for the reconstruction obtained by
BG-NMF is 21.94 dB while the PSNR obtained by P-NMF is
19.44 dB. Fig. 6 shows the prediction performance of different
methods with some examples. It can be observed that the BG-
NMF can predict the missing part better than the P-NMF.
The P-NMF assumed that the data was generated from a dis-
crete source, which makes itself weak at describing the con-
tinuous data. Also, applying a semi-bounded distribution to
describe the distribution of the bounded support data suffers
from the mismatch between the model and the source. Thus,
we believe that the proposed BG-NMF, which is based on the
Bayesian framework, is more suitable for the continuous
bounded support data. In this part, the sparse constraint was
the same as that in Section 4.1.

(54)

(4,5) € S,

5. We ran the P-NMF method on the original image pixel value,
which is in [0, 255].

(a) The ground truth. (b) The
parts.

e

(c) BG-NMF. (d) P-NMF (with ICM).

images with missing

Fig. 6. Examples from the missing pixels prediction. See Section 4.2.

4.3 Collaborative Filtering
Collaborative filtering is used to predict a person’s pre-
ferences by using other people’s preferences in some recom-
mendation systems. Generally speaking, the commonly
used CF methods can be categorized into two types: the
memory-based method and the model-based method [47].
The memory-based method measures the similarities
between persons [48]. The model-based method, on the
other hand, can investigate and recognize the patterns hid-
den in the database and make an prediction from a probabi-
listic perspective, given the pre-learned model [48], [49].
Generally speaking, the model-based CF method performs
better than the memory-based method because it addresses
the sparsity better, improves the prediction performance,
and gives an intuitive rationale for recommendations [47].
The Netflix problem [50] is such a problem.® The data set
is divided into two parts: a training matrix and a probing
matrix. These two matrices have the same sizes. In each
matrix, the row denotes different movies and the column
denote different reviewers. The element in the matrix is the
rating. The ratings that appear in the training matrix will
not appear in the probing matrix. All the ratings are integers
from 1 to 5. The task of the Netflix problem is to predict the
missing ratings given some reviewers’ existing rating
behaviors. It is worth to note that, the data matrix in the
Netflix problem is highly sparse, as not all the movies have
ratings and not all the reviewers have scored all the movies.
The proposed BG-NMF model fits the Netflix problem
nicely. Firstly, it seeks for a low-rank matrix approximation,
which can reduce the model complexity. Secondly, the BG-
NMEF model captures the data’s bounded property (ratings
are from 1 to 5), and, therefore, the prediction performance
is improved. Finally, the BG-NMF model can address the
fact the the Netflix data matrix is highly sparse by involving
a proper prior information. To apply the BG-NMF model to
the Netflix problem, we scale each rating from the interval
[1,5] to the interval (0, 1) to fit the beta distribution. The scal-
ing is carried out by y = 4152, where x is the rating value.
We set § = 0.5 empirically. Since training data set X is highly
sparse, we set both the basis and excitation matrices with
sparseness constraints. To handle the missing values, we
introduce a mask matrix M, which has the same size as the
training matrix X. Each entry in M is either 0 or 1, indicating

6. The Netflix contest was finished. Unfortunately, we cannot access
to the original database. However, a subset (6,040 x 3,952) of the origi-
nal database is available at http://www.mit.edu/~rsalakhu/BPMF.
html. The following evaluations and comparisons were carried out
based on this subset.
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TABLE 2
Comparisons of BG-NMF, PMF, BPMF,
and Sparse PCA
Method Probing RMSE
BG-NMF with point estimate 0.8624
PMF with gradient method 0.8787
BPMF with MCMC 0.8406
sparse PCA with point estimate 0.8665

We ran 20 rounds of simulations with I = 20 for each
method and the mean values are reported.

the value is present or not in the corresponding position in
X. Then we replace In X with M @ In X and replace In(1 — X)
with M ® In(1 — X) respectively in Algorithm 1. With the
estimated parameters, we predicted the missing values in
X. The root mean squared error (RMSE) between the pre-
dicted ratings and the true ratings is used to evaluate the
prediction performance.

Table 2 shows the RMSE obtained by the BG-NMF, the
probabilistic matrix factorization (PMF) [12], Bayesian PMF
(BPMF) [11] and sparse PCA [13]. The BPMF and sparse
PCA methods were proposed recently and shown to be effi-
cient for this problem. The smaller the RMSE is, the better
the prediction is. It can be observed that the BG-NMF per-
forms better than both the PMF and the sparse PCA. This is
because 1) the PMF utilized the gradient method, which is
not a Bayesian framework; 2) the sparse PCA (with Gaussian
assumption) did not consider or utilize the bounded support
property of the data. Unlike the BG-NMF or the sparse PCA,
which use the posterior point estimate, the BPMF applied
MCMC algorithm to generate samples, which could (in prin-
ciple) simulate the true posterior distribution more accu-
rately than the other approximation methods. This is
probably why the BPMF performs the best among all the
methods, even though it does not consider the bounded
property either. Generally speaking, the proposed BG-NMF
is an efficient method for the Netflix problem.

4.4 Cancer Epigenomics Analysis

In order to demonstrate another practical utility of BG-
NMF, we considered its application to the analysis of DNA
methylation data, which is naturally beta distributed (see
e.g., [28]). Currently, there is a lot of interest in DNA meth-
ylation as a key regulatory mechanism of gene expression,
since DNA methylation patterns are widely altered in many
complex genetic diseases, including cancer [51], [52]. DNA
methylation is naturally quantified by bounded support
data, and although standard dimensional reduction meth-
ods like NMF, singular value decomposition (SVD), and
PCA have been applied to DNA methylation data [53], most
of these standard methods do not take the bounded support
nature of the data into account. Thus, an attractive feature
of BG-NMF is the ability to perform dimensional reduction
on fairly large beta distributed data matrices, retaining the
beta distributed distribution in the pseudo-basis matrix as
in (51). This then allows the option for further clustering
algorithms designed for beta distributed data to be applied,
such as the Recursive Partitioning Beta-Mixture Model
(RPBMM) presented in [54].
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Fig. 7. RPBMM clustering results based on the transposed BG-NMF
pseudo-basis matrix. The 1st bar from the top is the normal (grey) and
breast cancer (black) examples. The clustering results are shown in the
2nd bar from the top. The heatmap shows the pseudo-basis matrix of
the BG-NMF. The heatmap itself has been standardized so that blue
indicates high level (~1), and yellow denotes low level (~0).

We considered a DNA methylation data matrix over
5,000 features (specifically, CpG dinucleotides) and 136
breast tissue samples, which was generated using a modern
beadarray platform interrogating 27,578 CpGs [55]. The
5,000 CpGs were selected as those with the highest variance
across the 136 samples. Thus, each entry in the data matrix
represents the methylation level (bounded between 0 and 1)
of a CpG in a given sample. Of the 136 samples, 23 were
normal (healthy) specimens, with the remaining 113 repre-
senting breast cancers. Normal and cancer samples are
known to be well discriminated at the level of DNA methyl-
ation [52], [56], hence application of BG-NMF to this data
matrix provides a benchmark to assess if BG-NMEF can effi-
ciently retrieve the components of variation associated with
normal/cancer status. Cancers specially are also known to
be highly heterogeneous [57], hence the expectation is that
BG-NMF can retrieve some of this heterogeneity.

In applying BG-NMF, we need to specify the dimension-
ality, i.e., the number of components to search for. To obtain
an estimate of the dimensionality, we used Random Matrix
Theory (RMT) [58]. Although data is distinctly non-normal
(even after mean-centering each CpG), RMT provides a rea-
sonable approximation of the dimensionality as shown by us
previously [59]. For our data matrix of 136 x 5,000, we esti-
mated a total of 14 dimensions out of the total 5,000 dimen-
sions. Thus, setting the number of basis vectors equal to 14
and applying BG-NMF to this data matrix resulted in a
136 x 14 pseudo-basis matrix and a 14 x 5,000 excitation
matrix. The hypothesis is that the dimensionally reduced
pseudo-basis matrix, whose element remains bounded sup-
ported and is assumed to be beta distributed, captures the
salient patterns of variation. To assess this, we used RPBMM
to cluster the 136 samples over the 14 BG-NMF pseudo-
bases. RPBMM inferred a total of nine clusters (see Fig. 7),
which correlated significantly with normal/cancer status as
assessed using the Adjusted Rand Index (ARI), an index
designed to evaluate the concordance of two partitions.
Although the ARI value was small (ARI = 0.12) this only
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TABLE 3
RPBMM Clustering Details for all the 136
Samples over 14 BG-NMF Pseudo-Basis Vectors

Cluster Normal Cancer
rLLLL 16 4
rLLLR 6 0
rLLR 1 32
rLR 0 31
rRLLL 0 4
rRLLR 0 3
rRLRL 0 10
rRLRR 0 5
rRR 0 34

reflects the relatively large number of clusters inferred (i.e.,
9), and indeed the ARI value was highly significant as
assessed using 1,000 randomizations of phenotype labels
(P<0.001, i.e. in none of the 1,000 randomization we
observed an ARI value as large as 0.12). The exact distribu-
tion of normal/cancer samples among the 9 clusters is shown
in Table 3. Thus, we can see from both Fig. 7 and Table 3 that
normal and cancer samples are well discriminated, but also
that breast cancers are highly heterogeneous, as expected.

Finally, we compared these results with what would
have been obtained had we used RPBMM directly on the
136 x 5,000 data matrix. Without prior dimensional reduc-
tion using BG-NMF, RPBMM also predicted nine clusters
with a similar ARI value (ARI = 0.11, P < 0.001). However,
while RPBMM on the excitation matrix only took 23 seconds
to run on a modern Dell Precision Workstation, on the full
136 x 5,000 data matrix it took about 55 times longer
(1,275 seconds). Our BG-NMF implementation on the full
data matrix took about 116 seconds, hence the overall effi-
ciency gain of using BG-NMF prior to RPBMM was by a fac-
tor of 8. Thus, we can conclude that BG-NMF can not only
retrieve biologically relevant patterns of variation in DNA
methylation data, but most importantly that it provides a
more efficient means of dimensional reduction. This is an
important consideration given that future applications will
require effective dimensional reduction and clustering on
even larger DNA methylation data matrices.

5 CONCLUSION

To explicitly utilize the bounded support property of the
data, a new Bayesian matrix factorization model, the
beta-gamma nonnegative matrix factorization (BG-NMF)
model, was proposed for the continuous data with
bounded support. The data distribution is described by
the beta density function and each of the parameters in
the beta density function is assigned with a gamma prior.
By approximating the objective function with a single
lower bound, an analytically tractable solution was
obtained. With this solution, we can approximately calcu-
late the posterior distribution of the parameters in the
BG-NMF model. The approximated posterior distribution
for each parameter is also gamma distributed. Therefore,
the conjugacy of the model is retained. With the estimated
posterior distributions, the original matrix could be recon-
structed efficiently. This BG-NMF approach can be used

in several important applications, such as source separa-
tion, collaborative filtering, and cancer epigenomics anal-
ysis. By comparing the proposed method with some
recently introduced and widely used Bayesian matrix fac-
torization methods, we demonstrated the good perfor-
mance of the proposed BG-NMF model.

APPENDIX A
OPTIMAL SOLUTIONS TO ¢*(B,) AND g*(H}:)

With the principles of variational inference, the optimal
solution for ¢*(B,;) is

ln q* (Bpk‘) = E\(I(Bpk:) [ln p(x, Z)] + const

= Z E\(I(Bpk) —InB (Z Apkat, Z Bpkat>:|
t k k

F(Ap,:aBp,:aH:,t)

+ By

Z H}sﬁt ln(l — X[)t)
t

+ (vo — 1)In By, — By By + const.

(55)

When considering Hj; as the variable, the optimal solu-
tion for ¢*(Hp) is

Ing"(Hy) = Eygm,,)[Inp(X, Z)] + const

= By [~ InB <Z AppHy, Y Bpka,)}
p k k

F(Ap.: aBp,: ,II;\t)

+

> A Xy + Y Buln(l— X,,t)} Hy,
p p

+ (pg — 1) In Hyy — o Hyy + const.
(56)

APPENDIX B
ANALYTICALLY TRACTABLE SOLUTIONS FOR g*(B)
AND g* (Hj)

With the EFA method, we can obtain the posterior distribu-
tion in gamma PDF form. Hence, an analytically tractable
expression for In ¢*(B,;;) can be obtained as

Ing"(By) = {Z |:1ﬁ <Z(Zpk + Epk)ﬁkl)

t k
-v (Z Epkﬁkt)
T

- {,30 — > Hyln(l - X)
t

Ppkﬁkt + vy — 1} In Bpk

B, + const.

(57)

With a similar approach, we can approximate the optimal
solution of ¢* (Hj;) by a gamma distribution as
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Ing*(Hyy)
{Z |:w( pk + Bpk)Hkt> (Zpk + Ppk)ﬁkt
P
(Z kat) Ay Hyy — <Z Bpkat) B Hy } In Hy,
&
+ DA Xy + > Bl = Xp) | Hie + (py — 1)
P P
In Hyy — ¢y Hjy + const.
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